
XPCOMXPCOM

Laurent Jouanneau
Course on Mozilla Education and Technologies @ Evry

October, 2009

Creative Commons Attribution-Share Alike 3.0 licence
http://creativecommons.org/licenses/by-sa/3.0/

Comete, 2009

Licence CC-by-sa

What is a XPCOMWhat is a XPCOM

● A component system

● XPCOM is inspired from Microsoft COM

● A way

– To open your XUL application to the world (externals
libraries...)

– To create your components into a language other than
javascript

– To bring components into an existing application through
extensions

● Adding features to existing internal components (ex:
protocol handlers)

● Replacing existing components
● Your own technical/business component for your

extension/app

Comete, 2009

Licence CC-by-sa

A componentA component

● No need to manage instances:

– Automatic destruction by using reference counters. Even
in C++

– A factory should be provided to declare and instancy the
component

– The component can be used as multiple instances or as a
service (automatic singleton management)

● Language agnostic: a component can be implemented with
any language, if the language binding is availabled

– Actual availabled binding: C++, Javascript (and Python)

● Should implement one or more interfaces

● Xpconnect: glue between the javascript world and all other
XPCom

Comete, 2009

Licence CC-by-sa

InterfacesInterfaces

● An interface describes public properties and methods
implemented by a component

● This is a « contract » between the component and other
components/client code → compatibilities between
components

– It means that if a component/client code needs a
component which have a specific interface, we can give to
it any components which implement this interface.

● Several components can implement the same interface and a
component can implement several interfaces

Comete, 2009

Licence CC-by-sa

InterfacesInterfaces

● Naming: aaIBbb

– Aa: vendor prefix (« ns » for Netscape, « moz » for
Mozilla...)

– I: for Interface

– Bbb: interface name

● Each interface have a UUID

● Interfaces are described into *.xpt files, which are produced
from *.idl files during the development.

● Interfaces can be inherit from other interfaces

● All interfaces have the nsISupports interface as ancester.

Comete, 2009

Licence CC-by-sa

XPConnectXPConnect

● This is the glue between a javascript context and the XPCom
system.

● When a component is explicitely instanciated, XPconnect
maps properties and methods of a component on a javascript
object.

● Some « native » JS object are also mapped to some XPCom
components (ex: DOM, xmlHttpRequest...)

● Is able to « decorate » a simple JS object as a component
when we give this object to a XPCOM component which
expect to receive a component with a specific interface.

● Provides the object « Components »

Comete, 2009

Licence CC-by-sa

ArchitectureArchitecture

XPCOM
system

*.xpt
files

C++ Client code

Library

Factory

Module

Factory

component component

Library

...

XPConnect

Javascript client code

Library

Factory

Module

Factory

component component

Comete, 2009

Licence CC-by-sa

Components objectComponents object

● Its main properties

– Classes: contain the list of available factories

– Interfaces: contain the list of available interfaces

● To use a component, we have to:

– Retrieve the factory corresponding to the component

– Call createInstance or getService method of the factory to
instanciate the component

– Indicate the interface we want to use on this component

– We can then use the component by calling methods or
properties corresponding on the interface we want to
use

Comete, 2009

Licence CC-by-sa

Creating an instance of a componentCreating an instance of a component

// Retrieve the factory of the component by using the contract ID
// of the component
var factory = Components.classes["a_contract_id"];

// call the createInstance method of the factory, and indicate the interface
// we want to use on the component
var myObject = factory.createInstance(Components.interfaces.nsITheInterface);

// later, if we want to use an other interface of the component
myObject = myObject.QueryInterface(Components.interfaces.nsIOtherInterface);

// shorter call
var myObject = Components.classes["a_contract_id"]
 .createInstance(Components.interfaces.nsITheInterface);

Comete, 2009

Licence CC-by-sa

Getting a component as a serviceGetting a component as a service

● Use getService instead of createInstance

● If we call getService several time for the same component,
we will have the same instance. A factory use a singleton.

// Retrieve the factory of the component by using the contract ID of the component
var factory = Components.classes["a_contract_id"];

// call the getService method of the factory, and indicate the interface
// we want to use on the component
var myObject = factory.getService(Components.interfaces.nsITheInterface);

Comete, 2009

Licence CC-by-sa

Objects to provide for a componentObjects to provide for a component

XPCOM
system

Module
(nsIModule)

During startup,
Declares

components

During shutdown
Undeclare

components

Return the factory
Corresponding to

A component

Factory
(nsIFactory)

Instancie
a component

uuid/contractid

The component
myComp

(myIMyInterface, nsISupports)

*.xpt *.idlConverted into Load

At startup

Describe one or more interfaces

Comete, 2009

Licence CC-by-sa

Creating a component in JavascriptCreating a component in Javascript

Comete, 2009

Licence CC-by-sa

Creating an XPCOMCreating an XPCOM

● Choose a contract id and a uuid

● Choose an existing interface you want to implement, or
create a new one

● If you want to create a new interface:

– Describe the interface in an IDL file

– Create an XPT file from the IDL file

● Develop your component, and implement all interfaces

● Develop the factory (nsIFactory)

● Develop the module (nsIModule)

Comete, 2009

Licence CC-by-sa

UUID et contract idUUID et contract id

● contract ID : human readeable ID

– Ex: « @mydomain.org/modulename/compname;1 »

● uuid/CID/class ID : unique hexadecimal number

– Ex: c0273bbc-ef55-4557-a276-cda221eeac03

– To create a UUID: uuidgen, guidgen.exe

Comete, 2009

Licence CC-by-sa

Choosing the interfaceChoosing the interface

We will create a component which implements the
nsISupportsString interface, already defined in Gecko.

[scriptable, uuid(d0d4b136-1dd1-11b2-9371-f0727ef827c0)]
interface nsISupportsPrimitive : nsISupports
{
 const unsigned short TYPE_ID = 1;
 const unsigned short TYPE_CSTRING = 2;
 const unsigned short TYPE_STRING = 3;
 const unsigned short TYPE_PRBOOL = 4;
(...)
 const unsigned short TYPE_INTERFACE_POINTER = 17;

 readonly attribute unsigned short type;
};

[scriptable, uuid(d79dc970-4a1c-11d3-9890-006008962422)]
interface nsISupportsString : nsISupportsPrimitive
{
 attribute AString data;
 wstring toString();
};

Comete, 2009

Licence CC-by-sa

Implementing the component in JSImplementing the component in JS

/**
 * contract ID of the component
 */
const MYSTRING_CONTRACTID = '@xulfr.org/tutorial/mystring;1';

/**
 * UUID of the component
 */
const MYSTRING_CLASSID = Components.ID('{df53456e-0484-4098-9353-ee22661e6819}');

We create a javascript file into the components/ directory of the
extension or the xulrunner application.

Let's first declare the contract id and the class id in some constants:

Comete, 2009

Licence CC-by-sa

JS Component: the main objectJS Component: the main object

function myStringImpl(){
 this._str = ''; // a « private » membre
}

myStringImpl.prototype = {

 //-------------- implementation of the nsISupportsPrimitive interface
 get type() {
 return Components.interfaces.nsISupportsPrimitive.TYPE_STRING;
 },

 //-------------- implementation of the nsISupportsString interface
 get data() { return this._str; },
 set data(aValue) { return this._str = aValue; },

 toString: function () { return this._str; }

}

Let's implement the object with methods and properties
corresponding to the interface we choose.

Comete, 2009

Licence CC-by-sa

JS Component: QueryInterfaceJS Component: QueryInterface

NsISupports should be implemented in all components. It declares only
one method for javascript components, QueryInterface, and two other
methods for C++ components, AddRef and Release

[scriptable, uuid(00000000-0000-0000-c000-000000000046)]
interface nsISupports {
 void QueryInterface(in nsIIDRef uuid,
 [iid_is(uuid),retval] out nsQIResult result);
 [noscript, notxpcom] nsrefcnt AddRef();
 [noscript, notxpcom] nsrefcnt Release();
};

QueryInterface is a function which should check if the requested
interface is one of the interface the component implements, and if yes,
should return the object which implements it (most of time, the object
itself).

Comete, 2009

Licence CC-by-sa

JS Component: QueryInterface (2)JS Component: QueryInterface (2)

myStringImpl.prototype = {

 (...)

 //-------------- implementation of the nsISupports interface

 QueryInterface: function(iid) {
 if (!iid.equals(Components.interfaces.nsISupportsPrimitive) &&
 !iid.equals(Components.interfaces.nsISupportsString) &&
 !iid.equals(Components.interfaces.nsISupports))
 throw Components.results.NS_ERROR_NO_INTERFACE;
 return this;
 }
}

Let's add the QueryInterface method:

Comete, 2009

Licence CC-by-sa

JS Component: the factoryJS Component: the factory

The factory is responsible to instancy the object corresponding to the
requested interfaces. The factory should implement the nsIFactory
interface.

var myStringFactory = {

 createInstance: function(outer, iid) {
 if (outer != null)
 throw Components.results.NS_ERROR_NO_AGGREGATION;

 return (new myStringImpl()).QueryInterface(iid);
 }

 // in our javascript file, the factory is in a global variable
 // so it is always in memory, we don't need to implement this
 // method
 LockFactory: function (lock) { }
}

Most of time, there is one factory per component

Comete, 2009

Licence CC-by-sa

JS Component: the moduleJS Component: the module

The module is responsible to register and instancy the factory
corresponding to the requested contract id. The module should
implement the nsIFactory interface.
var myStringModule = {

 registerSelf: function(compMgr, fileSpec, location, type) {
 compMgr.QueryInterface(Components.interfaces.nsIComponentRegistrar)
 .registerFactoryLocation(MYSTRING_CLASSID,
 "myString JS component",
 MYSTRING_CONTRACTID,
 FileSpec, location, type);
 },

 getClassObject: function(compMgr, cid, iid) {
 if (!iid.equals(Components.interfaces.nsIFactory))
 throw Components.results.NS_ERROR_NOT_IMPLEMENTED;

 if (!cid.equals(MYSTRING_CLASSID))
 throw Components.results.NS_ERROR_FACTORY_NOT_REGISTERED;

 return myStringFactory;
 },

 canUnload: function(compMgr) { return true; }
};

Comete, 2009

Licence CC-by-sa

JS Component: declaring the moduleJS Component: declaring the module

Each javascript file for components should have one specific function,
NSGetModule, which is called during the load of the file by the
XPCOM system. This function should return the module object we
have implemented.

function NSGetModule(comMgr, fileSpec) {
 return myStringModule;
}

Comete, 2009

Licence CC-by-sa

XPCOMUtils: simpler JS componentsXPCOMUtils: simpler JS components

● Since gecko 1.8.0, a javascript module (called also a JSM, do
not confuse with xpcom module objects) is provided to
facilitate the development of javascript XPCOM components
: XPCOMUtils

● It provides helpers to create some object like factories and
modules, or to implement some function like QueryInterface

● We use it by writing this instruction at the beginning of the
javascript file:

Components.utils.import("resource://gre/modules/XPCOMUtils.jsm");

Comete, 2009

Licence CC-by-sa

XPCOMUtils: the componentXPCOMUtils: the component

myStringImpl.prototype = {

 classDescription: "myString2 JS component",
 classID: MYSTRING_CLASS_ID,
 contractID: MYSTRING_CONTRACTID,
...

New properties to define: classDescription, classID, contractID

 QueryInterface: XPCOMUtils.generateQI ([
 Components.interfaces.nsISupportsString
])

To implement, QueryInterface, call generateQI method by given the
list of interfaces you implement:

Comete, 2009

Licence CC-by-sa

XPCOMUtils: the moduleXPCOMUtils: the module

function NSGetModule(aCompMgr, aFileSpec) {
 return XPCOMUtils.generateModule([myStringImpl]);
}

No need to create a factory and a module by hand. Just call the
generateModule method. It will generate a module object and a
factory object for each object you provide:

Comete, 2009

Licence CC-by-sa

Creating an interfaceCreating an interface

Example of a file xfrIBankAccount.idl
#include "nsISupports.idl"

[scriptable, uuid(163CD99E-45DB-4717-A4AA-8FC660956310)]
interface xfrIBankAccount : nsISupports
{
 readonly attribute long balance;

 void credit (in long aAmount);

 void charge (in long aAmount);
};

Comete, 2009

Licence CC-by-sa

Interfaces: generating an xpt fileInterfaces: generating an xpt file

xpidl -m typelib -w -I ../idl/ -o components/bankaccount dev/xfrIBankAccount.idl

● Use the xpidl program of the SDK. Here are main
parameters:

– "-m typelib" to indicate that you want to generate a xpt file

– "-I path/to/sdk/idl" to indicate the directory which contains all
the idl of the SDK

– "-o path/to/store" to indicate the directory where to create the
xpt file

– your_file.idl

● example:

Comete, 2009

Licence CC-by-sa

Creating a C++ componentCreating a C++ component

Comete, 2009

Licence CC-by-sa

The SDKThe SDK

● You can use the official SDK to build your library, however it
has some limitations:

– it contains only « frozen » and few other useful interfaces,
so you have only corresponding headers and idl files to
these interfaces.

– It doesn't use the build system of Mozilla : it needs more
effort to build cross-plateform libraries.

● Instead, you can use sources of XulRunner or Firefox, and
build your component with them.

● Compilation with Firefox/XulRunner:
http://developer.mozilla.org/en/docs/Build_Documentation

http://developer.mozilla.org/en/docs/Build_Documentation

Comete, 2009

Licence CC-by-sa

Compilation with firefoxCompilation with firefox

● Summary

– Create a directory (« myextension » for instance) into the
« extensions » directory of the mozilla sources.

– Create appropriate makefiles into « myextension » with
the sources of your component

– In the .mozconfig file used to build firefox or, add the
name of the extension in the –enable-extension
instruction

– Compile firefox

● See details in the xpcom_cpp example, and in
https://developer.mozilla.org/en/Creating_Custom_Firefox_E
xtensions_with_the_Mozilla_Build_System

	start
	XPCom
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Xpcom 2
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30

